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ORTHOMETRIC HEIGHT DETERMINATION USING 
GPS OBSERVATIONS AND THE INTEGRATED GEODESY 

ADJUSTMENT MODEL 
lby GUnter W. Hein

National Geodetic Survey 
Charting and Geodetic Services 
National Ocean Service, NOAA 

Rockville. Md. 20852 

ABSTRACT. An integrated geodesy adjustment is presented for the de 
termination of orthometric height differences using observations of 
the satellites of the Global Positioning System (GPS) in combination 
with all available terrestrial observations. In particular. linear 
(pseudo-) observation equations for orthometric heights and the GPS 
base-line components are developed which allow for the consideration 
of noise in both data types. 

1. INTRODUCTION 

Initial relative positioning results (Goad and Remand; 1984) using the satel­

lites of the Global Positioning System (GPS) encourage users to compute orthometric 

height differences, �H = H2-H1, by use of the well-known relation: 

(1-1) 

where Ah = h2-h1 is the difference in ellipsoidal heights, h ' and t.N i = N2-N1 is 
the difference in geoid heights, N . Whereas Ah can be derived by GPS over dis­i
tances of the order of 100 km with centimeter, or even, subcentimeter accuracy, 6N 

has to be Jetermined using other data sources that do not meet the same level of 
accuracy. 

Ipermanent address: Institute of Astronomical and Physical Geodesy, University 
FAF Munich, Werner-Heisenberg-Weg 39, 0-8014 Neubiberg, Federal Republic of Germany. 

This research was performed during May-August 1984, when the author was a Senior 
Visiting Scientist at the National Geodetic Survey, under the auspices of the Com­
mittee on Geodesy, National Research Council, National Academy of Sciences, 
Washington. D.C. 



In general, two approaches are possible for computing precise geoid heights or 

geoid height differences, respectively: 

(1) Gravimetric de terminations using S tokesl integral or least-squares collo­

cation. 

(2) In terpolation of the relative geoid height surface from stastions where 

the orthometric height is known by leveling, and precise ellipsoidal 
heights (or differences) are determined by GPS so that equation (1-1) can 

be used in the reverse sense. 

Engelis e t  a1. (1984) compared geoid undulation differences derived by the gravi­
metric determination in (1) above, with resulsts ob tained by GPS, see (2) above. The 
two sets of computed geoid undulation differences have an r.m.s. discrepancy of 

± 5 cm for an average station separation of the order of 14 km. In spite of the 

fact that this is already a good result, the resultant orthometric hei9ht differ­

ences cannot replace conventional geodetic (precise) leveling, which in a third­

order network for the equivalent line length yields an estimate with an uncertainty 

of about a = G /l 14 = 7.5 mm when assuming "l = 2.0 mm for the United States. km km 

However, most studies have been performed in areas having only small elevation 
differences and a "smoothtl geoid. Therefore, error estimates would increase when 

applying eq. (1-1) in mountainous areas, because of the influence of the terrain 

on the gravimetric determinations. On the other hand, using approach (2) assumes 

precise vertical control has already been established by leveling in the area of 

consideration. Thus, the accuracy of the resulsting geoid-height surface relies on 

the accuracy of the leveling, which is not always as good as usual error propaga­
tion indicates. Refraction and magnetic influences are two examples of systemastic 

error sources that were not properly accounted for in the past. Cost effective­

ness and reduction in observing time are important criteria in geodetic observation 

strategies for establishing and monitoring nestworks. Although geodetic leveling is 

one of the most accurate geodetic measurement techniques, it might not be possible 
to apply it in the future for monitoring large networks in and within short time 

intervals with reasonab1e costs. I t  is, therefore, worthwhile to concentrate again 

on the precise determination of geoid heights and differences, respectively� to 
take advantage of relation (I-I). 

In the following, a new integrated geodesy adjusstment model for orthometric heights 

is presented to overcome the difficulties and drawbacks of the models previously ap-
2 



plied to that problem. It is not required to hold fixed any quantity beforehand 
to derive another one, as, for example, is done when determining the geoid height 

surface from leveled orthometric height and GPS-derived ellipsoidal heights. 30th 

quantities are considered as observations in the integrated geodesy adjustment, 

with an associated covariance matrix. For that purpose a new linear observation 

equa ti on for (orthometri c) hei ghts is deve loped·. 

2. THE PRINCIPLE OF AN INTEGRATED GEODESY ADJUSTMENT 

For the reader who is not familiar with the integrated geodesy adjustment, the 

principle is briefly outlined here. Further details can be found in Hein (1982a,b) , 

Hei n and Landau (1983). 

Every geodetic measurement, 1, can be expressed as a nonlinear functional depend­

ing on one or several position vectors � = (x,y,z) in space, and on the gravity 

field of the Earth, symbolically written: 

1 = F(><.,W) (2-1) 

where W is the gravity potential 

W = V + w' (x' + y2)/2 (2-2) 

V is the potential of the gravitational force, w is the angular velocity of the 

Earth's rotation and (x,y,z) are Cartesian coordinates in a geocentric reference 

frame. The z-axis coincides with the rotation axis of the Earth. 

As is done in usual adjustment practice, we linearize eq. (2-1) by introducing 
approximate values XO and U for the position and gravity potential. respectively: 

WC") 

ox=xs+ox (2-3) 

= UC)() + T()() (2-4) 

If U ;s a so-called nonmal potential associated with an adopted reference system of 

the International Association of Geodesy. T is then the disturbing potential as in 
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(2-5) 

classical geodesy. Thus, eq. (2-1) is expanded in a Taylor series at P(�a , U), and 

neglecting higher order terms one obtains: 

(xo,U)ox. + L (T) - 1 

the noise, n. in the observations: 

(2-6) 

where 

,F a 
= Fx.sC"o, u) = -- (!'. , U), and (2-7)ai aXi1 

01 = 1 - F(!'.
a,U). (2-8) 

3 
" 

i=1 
Fx.1 

or, in matrix notation, including 

01 = aT oX + Rt + n 

L(T) in eq. (2-5) is a linear operator applied on the disturbing potential T. It 

is expressed in eq. (2-6) by a coefficient matrix R and a vector .1 containing the 

disturbing potential and its functionals. 

As shown in Eeg and Krarup (1973), the linear system of eqs. ( 2-5) is solved by 

minimizing 

T -1 T -1 f !!s 15 .1:;: min ( 2-9) � nn . +! tt

and thus we obtain as an estimate for o� and the corresponding formulas of a 

general collocation-type model (Moritz 1980:116)s. fs and � are covariance ma­nn tt 
trices of � and !. respectively. 

The integrated geodesy adjustment can be considered as a discrete solution of a 

free boundary value problem, determining simultaneously both the coordinates and the 
functionals of the disturbing potential. 

3. THE OBSERVATION EQUATIONS FOR ORTHOMETRIC HEIGHTS 

IN THE INTEGRATED GEODESY ADJUSTMENT 

The observation equation for orthometric heights, H, in the integrated geodesy 

adjustment model will be derived next. It might be considered as the three-dimen-

4 
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sional analogue of 

(3-1) 

or eq. (1-1), when 

with the 

and Moritz 

H (P) 

dealing with the corresponding differences in ellipsoidal 

heights, h, and geoidal heights, N. 

We start formula for orthometric height using Helmert1s definition 

(Heiskanen 1967:s167): 

C (P) (3-2) 
g (P) + aH(P) 

where 

C is the geopotential difference, C( P) = Ws (Q) - W (P), where os
Ws (Q) belongs to point Q on the geoid, os

g is the actual gravity at surface point P, and 

a is a coefficient derived from the normal gravity field. 

a = 1 'Y 2;rkp) (see Heiskanen and Moritz 1967: 167) (3-3)- (zaTl + 

where 

By is the normal vertical gravity gradient, 3h 

k is the gravitational constant, and 

p is the normal density. 2,67 g/cm3 

aInsert; ng numeri ca 1 va 1 ues ; n eq. (3-3), is determi ned to be 

-1 
a = 0.0424 gal km . (3-4) 

To linearize eq. (3-2). it is divided into a so-called normal part or approxi­

mate value, HO, and a disturbing (linear) part, 6H: 

H = HO + 6H . (3-5) 
5 



OApplying Taylor's theorem at x = X � and neglecting terms of higher order, one ob­-p -p
tains: 

oH oC (3-6) 

where 

In the further linearization process we introduce approximate values for gravity, 

og, and potentials, oWs and oWp' in eq. (3-6). To be consistent with former paperso 
(Hein 1982a,b) , the symbol j is used for normal gravity 

O O Os o= (3-8)g (�p) gs (�p) + og (Xsp) = j (x ) + og(xo)- -p -p 

Wp p(��) U(��) + oW (��) and 

For the disturbing quantities we assume that 

I og 1« j 
I oW 1« U 

I cWso 

p 

1« U 

(3-9) 

(3-10) 

so that they can be treated in a linear way. After inserting eg. (3-8) to eg. 

(3-10) into eq. (3-6), one obtains: 

(3-11) 

(3-12) 

and the approximate value, HsOs, is given by 

6 



U(x ) + T'x ) cop 

If HO is not sufficiently close to the actual value, the entire process must be 
iterated. 

The next step in the derivation deals with IWo and IWp in eq. (3-11). We know 
that 

(3-13 ) _p 

(3-14) 

Expressing these in a Taylor series: 

W (x ) U�o) + [gradTU(x°) l  Ix + T(x
o) + 02(T, oX ) (3-15)p -p = p -p -p -p -p 

WO�Q) U(�) + [gradTU(� ) l  l!'.o + T(.>Qj ) + 02(T, l!'.o) (3-16)

-p 

= 

Neglecting second- and higher-order te�s. one obtains for oWp 

oW = W (x ) - U(xo) = 
j T(xo) ox + T(xo) (3-17)p p -p -p - -p -p 

IW W (!'. ) U(�) ,iT(� ) (3-18)= - = o o o

where i(��) = grad U(��) 
(3-19)i(�) grad U(�) .= 

However, � and � are not independent of each other. Thus, we approximate �Q onp
the geoid by 

� xp + Hn (3-20)!'.o - -p 

where 

cos . cos Ap p 
= cos • sin A-pn - (3-21)P P 

sin 'ep 

7 



is the unit vector normal to the geopotential surface at p. � and A are respec­

tively the astronomic latitude and longitude of the unit gravity vector at P. Re­

lation (3-20) holds for the case that the curvature and the torsion of the plumb 

line are set to zero. Since we are only looking for an observation equation� this 

assumption is justified. Equation (3-20) has, however, to be linearized. Thus we 

have 

00-"<) oX + cH -"p + cn (3-22) = H 
-p -p 

and 

.p + c.p 
= A + OApP 

nO + on-p -p 

cos "sp cos 

= cos sin 

sin .p 

cos "sp sin 

As

= -cos cos A' p 
-cos .p c.p 

p 

P 

Asp 

Ap 

(3-23)

op 

.p 

(3-24) 

n 

Ap 

(3-25)-p 

and 

Ons-p (3-26) 

OAp + sin 'p cos Ap c.p 
on (3-27)oAs + sin 's sin As o.-p p p p p 

" and A in eqs. (3-23) to (3-27) are the geodetic latitude and longitude at P P P .
Expressions for c. and cAp can be found in Hein (1982a: eq. (2-22) p f.). 

After inserting Mp. cAp into eq. (3-27) and the resulting expression into 

eq. (3-22) a new value for (3-18) can be obtained. Substituting this equation to­

gether with eq. (3-17) and o9p (Hein 1982a:eq. (2-33) f.) in eq. (3-11), and after 

some lengthy, but simple arithmetic rearrangements, we obtain the linear observa­
tion equation of orthometric heights in the integrated geodesy adjustment model. 

8 



A (-c::--:-:-:-Cb
) 

Jr COS p ' 

oH = X ox + Y oy + Z ozP P P 

(3-28) 
Tl . 

The indices of T in the third line of eq. (3-28) indicate differentiation with re­

spect to spherical coordinates (r,b,l). 

Thus, oH is linearized with respect to (x,y,z) of the surface point P and the 

disturbing potential T at Q and P, as well as the gravity disturbance and the de­
flections of the vertical. The coordinate unknowns form the deterministic term in 

the general collocation model (2-6), whereas the disturbing potential and its deri­

Yates are part of the stochastic signal !. 

The coefficients X, Y, Z in eq. (3-28) are given by the expression a {X,Y.Z} 

J 

sin 

Vp VQ _ 
jxpJ 

jp + O'.H 

aip = {Xip ' 1, 2, 3 Yip' Zip}' i = 

cos sin 

[sin 

(3-33) 

cos (3-34) 

-I 
a q [Ha sin op (jXQ cos Ap + jyQ sin Ap jZQ cos op) alP = -

(jxQ AHO cos O Ap) a zp (3-29)jyQ cos-+ p p 

0)+ ( a3P + jxQ 

where 

q = jp + aHa + cos ¢p cos Ap jxQ + cos op sin Ap jyQ +si n op jzQ (3-30) 

· -IJ T0 A ,  <I> sin A, -cos .J [VxxXIp [sin (3-31)V V Jxy xz

I 
JT• cos A, sin ¢ sin A ,  -cos .J [V V Vyx= J

· _YIp (3-32) yy yz 

· -I 
JTlIP J [sin ¢ cos A ,  sin 0 sin A, -cos .J [Uzx Vzy Vzzs

1X2p cP [sin A, -cos A, OJ [Vxx VXY Vxz J T 

9 



• 
1 

J 

(3-37 

(3-39) 

, 

(3-43 ) 

(3-45 ) 

YZP = J CO
1 
S [si n A, -cos A, 0] [Uyx Uyy Uyz]

T (3-35) 

= [sin A -cos A, 0] ]T (3-36)ZZP COS <P [Uzx Uzy Uzz

X3P [-COS cj) cos A, -cos tP sin A, -sin <p] [Uxx Uxy ]TUXZ 

[-cos • cos A, -cos <P sin A, -sin .] [UYX Uyy U ] T (3-38)Y3P yz 

Z3P = [-cos q.. cos It, -cos • sin A , -sin <p] [Uzx Uzy Uzz ]T 

Note that jx
,jQ -- � IQ 

jyP = ;�IP , Uxx = ,ZUz- ' etc. 
ox 

The coefficients for T in eq. (3-28) are givenby 

TQ=q-I (3-40) 

(3-41) 

If at the point Q on the geoid, one has Wo = UQ then, the unknown TQ in eq. (3-28) 
drops out. 

The other coefficients p, S, A in eq. (3-28) are defined by the expression 

b * = {p,S,?.} . 

+ HO cos <pp(jxQ sin A - jyQ cos Ap)b*2p (3-42)p 

+(
Up - UQ

) b;plHOj + p " where 1, 2, 3 btp { P i p Sip' AiP}'
Pl =sin(<p-b) 

= ' 

p

=Blp cos(<p -b) (3-44) 

AIp = 0 (for 1 = A) 
10 



(3-49) 

(3-50) 

(3-51) 

P' = 0 (3-46)p 

(3-47) 

(3-48) 

b) 

b) 

= 0 (for 1 = A)A3p 

S'p 0 

\2 = p -1 / cos 4> 

P3 =P -j cos (¢ 
S = -j3p sin (¢ 

Discussion of the observation equation 

(1) Assume that orthometric heights are available in a digital terrain data 

base. Then we are able to express an observation equation of the type in eq. (3-28) 

for every height. If we hold the position fixed and, consequently, neglect the de­

terministic coordinate part in (3-28), the result is a linear system of equations 

that can be considered as a diScrete analogue of the integral determination of the 

gravity potential (and its functionals) by topographic masses, see e.g. Reinhart 

(1968) - at least theoretically. The problem is the signal-to-noise ratio of H or 

6H in eq. (3-6), respectively, and corresponding unknowns. Both terms on the right 

hand side of eq. (3-6) are of the order of centimeters or decimeters. 

(2) If the heights are on a grid, the covariance matrix JS has a regular struc­tt 
ture, which can be used to compute its inverse analytically. 

(3) Since eq. (3-28) is an observation equation of the collocation type, it ena­

bles us to combine it with all other gravity-related observations in one approach 

for the determination of the gravity potential and its functionals. Gravity gaps 

can be filled with heights as (pseudo-) observations, if the appropriate accuracy 

is available. 

(4) It is obvious that an orthometri� height cannot determine the horizontal po­

sition of a station. As a conclusion one miQht think that a development of H as a 

function of 3D coordinates is inappropriate. Butsthe reason behind that is the abil­

ity to combine it with 3D baseline components derived by GPS or very long baseline 

interferometry (VLBI) as shown in the next section. 

11 



(5) If other than Helmert heights are available, the derivation can easily be 

changed by substituting a different denominator in eq. (3-2). In the case of normal 

orthometric heights, for example, g in eq. (3-2) has only to be replaced by normal 

gravity j and the linearization of eq. (3-8) is superfluous. 

4. THE APPR OACH FOR DETERMINING ORTHOMETRIC HEIGHTS USING GPS OBSERVATIONS 

m' Present GPS receivers (MACROMETER and Texas Instruments TI 4100) use the phase 
observables of the Global Positioning System for determining relative base line com-

ponents. Two treatments of the GPS observations in the integrated model are pos-

sible. The first one uses the phase as a direct observable and also considers the 

orbit to be unknown in the observation equation (EiBfeller and Hein 1984). Conse-

quently, orbit integration is part of the solution. 

For the second possibility, certain preprocessing provides Cartesian coordinate 
obsdifferences, 6x9�

-
S = (x. - x.) as GPS (pseudo-) observations associated with a lJ -J -l 

covariance matrix, C = CA in a linearly conventional terrestrial II system. The -nn -LlX�X 
basic relationship to those Cartesian coordinate differences, ��. is then 

x _ xobs = (4-3) 

Ax" = (1 + k) R AX9i)s (4-1)-1J -w -lJ 

where k is a small seale change and R is a rotation matrix for small rotations 
-w 

ws' w ' w ' x ys zs

1 0 0I -w 0 -wYWzWz y 

+ = I + oR (4-2)0 1 0R 1 0-wz Wx -wz Wx-w -w' 

0 0 1 Wy -wx 0 

I is the identity matrix. Considering further, that 

I 
, wy -wx 1 

oR x = oR w 
-w - -x-

2MACROMETER is a trademark of Aero Service Division, Western Geophysical Company 

of Arneri ca. 
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(4-4) 

1J 
and 

where 

o -z y 

oR-x = z o -x 

-y • o 

and introducing approximate coordinates �� • �j the resulting linear observation 
equation is (Steeves, 1984) 

obs 06 •.. - 6x.. ox· - ox. - (oR ) .. ow - ok 6 •.. (4-5)-lJ -lJ -J -1 -x 1J - -lJ 

where ���j are the differences between corresponding approximate coordi na tes, x� o -J 
x . . O�j and o�i are defined according to eq. (2-3).

-1 

Further� 

0 -�Zij 6Jij 

(oR )..-x 1J ll.Zij 
= 0 -�xij (4-6) 

-6Y· . ll.Xij 0 

ow ow. oW . (4-7)y oWz J T 

Thus, 8�j� 8�i' 8� and ok form the deterministic unknowns (-+ o�) in eq. (2-6). 

eq. (4-5). There is no signal! in 

Now, a linear system of equations of the type in eq. (2-6) can be set up for 

- GPS base 1 i ne components, �x -lJ .., see eq. (4-5) ; 

- orthometric heights, see eq. (3-28) 

and, furthermore, if available 

relative and absolute gravity observations, ll.g, g; 
- geopotential differences, �W .. ; 1J 
- astronomical latitudes and longitudes, � , A; 
- as well as any other terrestrial measurements. 

13 



The linear observation equations for the measurements above are given in Hein 

(1982a). 

'sThe corresponding combined solution yields geocentric coordinates, �, as well as 

the signal, t; the last consisting of the disturbing potential, T, and its first­

order derivatives (gravity disturbance and components of the deflections of the 

vertical). By simple transformations one readily obtains the geoid heightst 

N = T/j, and the adjusted ellipsoidal heights or differences, respectively, so that 

the orthometric height difference can be determined by (1-1). 

The necessary covariance matrix, i can be determined from (global) covariance tt. 
models using the characteristics of the local gravity field. 

T If the matrix f = fnn + � � � is positive definite and the observation sta­tt 
tions under consideration are not all on a spheropotential surface, U = constant, 
then no datum defect appears in the integrated geodesy adjustment, see Hein and 

Landau (1983). If the initial approximate geocentric coordinates are not suffi­

ciently accurate, the process must be iterated. As long as we are interested only 

in relative quantities, for example,orthometric height differences, we can intro­

duce into the adjustment one geocentric position as fixed. A high accuracy for 
this position is not required. 

Since the integrated geodesy adjustment is solved by a general collocation-type 

model, it has the capability to interpolate any functional of the gravity disturb­
ing potential (geoid heights, deflections of the vertical, gravity gradients, etc.) 

in the area under consideration. 

5. CONCLUSIONS 

The derived integrated geodesy adjustment model offers a way of computing ortho­

metric height differences as well as precise geoid heights taking advantage of ob­

servations of the satellites of the Global Positioning System or VLBI and using all 

other avai}able terrestrial observations. In particular, it does not require that 
either orthometric heights or geoid heights, respectively, be considered error-free 
as assumed in traditional approaches. The combination has become possible by de­

veloping linear (pseudo-) observation equations for an orthometric height and the 

GPS base line components in the integrated model. 

14 



The underlying collocation-type model allows one to predict the geoid height and 
all other functionals of the gravity disturbing potential in the area under con­

sideration. The consideration of noise in the data and the resulting error sta­

tistics provide a tool for a real assessment of the computed quantities. 
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